not (forall s in S where f(s) is in T) = (there exists s in S such that f(s) is not in T)
<math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <csymbol cd="relation1">eq</csymbol> <apply> <csymbol cd="logic1">not</csymbol> <bind> <csymbol cd="quant1">forall</csymbol> <bvar> <ci>s</ci> </bvar> <apply> <csymbol cd="logic1">implies</csymbol> <apply> <csymbol cd="set1">in</csymbol> <ci>s</ci> <apply> <csymbol cd="set1">suchthat</csymbol> <ci>R</ci> <bind> <csymbol cd="fns1">lambda</csymbol> <bvar> <ci>s</ci> </bvar> <apply> <csymbol cd="set1">in</csymbol> <ci>s</ci> <ci>S</ci> </apply> </bind> </apply> </apply> <apply> <csymbol cd="set1">in</csymbol> <apply> <ci>f</ci> <ci>x</ci> </apply> <ci>T</ci> </apply> </apply> </bind> </apply> <bind> <csymbol cd="quant1">exists</csymbol> <bvar> <ci>s</ci> </bvar> <apply> <csymbol cd="logic1">and</csymbol> <apply> <csymbol cd="set1">in</csymbol> <ci>s</ci> <apply> <csymbol cd="set1">suchthat</csymbol> <ci>R</ci> <bind> <csymbol cd="fns1">lambda</csymbol> <bvar> <ci>s</ci> </bvar> <apply> <csymbol cd="set1">in</csymbol> <ci>s</ci> <ci>S</ci> </apply> </bind> </apply> </apply> <apply> <csymbol cd="set1">notin</csymbol> <apply> <ci>f</ci> <ci>s</ci> </apply> <ci>T</ci> </apply> </apply> </bind> </apply> </math>
Author: Design Science, Inc. (E. Cannon, E. Tabacman, R.Miner)